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AFIT/GAJENY /92D-12

Abstract

The performance of an automation or robotic device can be measured in terms
of its power efficiency. Screw theory is nsed to mathematically define the task in
stantaneously with two screws. The task wrench defines the effect of the deviee on
its environment. and the task twist describes the motion of the deviee. The tasks can
be separated into three task tvpes: kinetic. manipulative. and reactive. Efficiency
metrics ave developed for each task tvpe. The output power is strictly a function of
the task screws, while device input power is shown to be a function of the task. the
device Jacobian, and the actuator tvpe. Fxpressions for input power are developed
for two common types of actuators. DC' servomotors and hydraulic actuators. Simple
examples are used to illustrate how power analysis can be used for task/workspace

planning, actuator selection, device configuration design, and redundancy resolution.
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POWER ANALYSIS IN FLEXIBLE AUTOMATION

1. Introduction

An underlving cost in all aspects of engineering is the cost of enerev. | his is
particularly true of many automation and roboties applications. In factories, large
numbers of robots use power to lift weld, paint. and grind. Tnspaces possible roboties
applications would use energy derived from fuel or equipment which costs thansands
of dollars per pound to launch. The energy efficiency of a robot can hiave a dramatic
effect on the econemic feasibility of a system. vet this topie is seldom mentioned in

robotics #d automation literature.

[.1  Motivation and Goals

In order to design and usce robots in an energy efficient manner. a basic analysis
of their energy use is required. This thesis develops a method to quantify the power
efficiency of a robotic mechanism in the completion of a specified task. To this end.
the task is detined mathematically using screw theory. and a methed is develaned
that describes the power consumption of the robot in terms of the task.  Since
the appropriate measure of efficiency of the mechanism depends upon the nature
of the required task. several metrics are proposed to cover the spectrum of task
possibilities. Finally, the utility of power analysis is illustrated through the use of
multiple applications. These include examiples of how power analysis can be nsed for
task /workspace planning, actuator selection, manipulator design, and redundancy

resolution.




1.2 Scope

The analysis performed in this thesis represents a foundation for an area that
has been relatively untouched in roboties. As ~uch, many simphitications Tiave hee
made i the interest of explorimg the substantial opportunitios olfered by this new
approach.  First. virtually all of the tvpical sources of incfliciency have been e
nored. The analvsis neglects all sources of friction and actinator losses snch as motor
windage. core-loss. hvdranbic fluid leakage. transimission backlash. etes Another <ie
nificant limitation ix the dependence on the instantancons definition of the task.
With this assumption. a complex function of a robot can be considered the <sum of
many tasks. cach of which is constant. The analvsis also neglects dvnamic effects on
joint torque. instead opting for the guasi-static relationship between joint torgues
and end-effector loads. which is commonly used in robotics for devices which have
little acceleration or for situations where the average joint torques are of mterest.
Finally. the devices used in the illustrative examples are composed of massless Tinks
to ease the computational complexity. These assumptions are not essential to the
power analysis. but serve to make this introductory effort more manageable, In the
future. it 1s hoped that refinements can be made to the basie cquations established

here.

1.3 Thesis Overview

The purpose of Chapter 11 is twofold. The first purpose is to acquaint the
reader with earlier research in the energy efficiency of robots and with the variety of
other metrics proposed to aid i robot design and applications. Second. the sonrees
used to provide a basic nnderstanding of serew theory and the workines of roboties
actuators are reviewed.

Chapter I lays the foundation for the power analvsis. Serew theory is reviewed
for use in the task definition, categorization of task tvpes, and the development of an

expression for output power. An ideal model for robotics actuators is also presented




which provides a startine point for the incorporation of the actnator into the power

analvsis.

Chapter IV s the heart of this thesis. There are three primary sections s the
chapter. Firsto it nses serew theory to deline the task. and establishes thee Tash
tvpes: kinetic, reactive, and manipulative. The analvsis relates task tvpe to the
relative orientation and magnitude of the task serews. The seeond section discises
the power in the task. The outpnt power is given in terms of the task serews and
the contrast hetween usefnl and real power is considered. Several non traditional
forms of power loss are illustrated ineluding reactive power and geometric power.
Fxpressions are developed for the deviee inpit power for robotic mechanisnis nane
DC motors and hvdranlic actuators. and the expressions are transformed from joinm
space to task space. The third section of the chapter proposes three metrics tor

power cfficieney and deseribes their relation to task type.

Chapter V' contains applications of power analysis and the power efficiency
metrics. These examples demonstrate methods for task/workspace planning. actir
ator comparison. manipulator confignration comparison and redundaney resolution

using power analysis.

Chapter VI snmmarizes the results of Chapters IV and V_oand provides con

clusions and recommendations for future research.




Il Latcrature Review

Inergy efliciencey in roboties has not bheen well studied. This may be atiributed
to the relative novelty of the ficld. sinee the bulk of reseavch has necessarily heen
devoted to first understanding the kinematics. dynamics and control of robots. One
of the early discussions ol energy efficiency was in the context of a walking robot.
where Hirose and Umetani in 1980 (1) and Waldror. and Kinzel in 1981 (2) discussed
one of the advantages of a pantograph geometry as being a high mechanical efficiency.
In particular, Waldron mentions “bhack-driven™ actuators as a source of inefficiency

in robots.

In 1938, Song and Lee (3) continued the investigation of the mechanical effi-
ciency of pantograph type manipulators. They defined geometric work as the differ-
ence between actuator work and output work of a robotic system, and demonstrated

that a massless pantograph manipulator does zero geometric work.

Most recently, Spenny and Leahy (1) used the concept ol geometric work to
define geometric mechanical efficienicy (GME). GME was then used to determine the
optimum 2-DOF manipulator design for lifting in a gravity field. They considered
serial, parallel, and pantograph type manipulators and incorporated the mass of
the links into the study. Their results indicated that, in fact, a parallel structure
can outperform the pantograph over a significant portion of workspace under these

conditions.

Many other metrics have heen proposed to define the guality of a manipulator
or a grasp. One of the most widely applicable of these is the measure of manipulability
(MOM) defined by Yoshikawa in 1984 (8). The MOM is a function of the determinant
of the Jacobian and its transpose. It is a continuous measure that cvaluates the
kinematic quality of robotic mechanisms and can be used in design and control of

robots. A similar quality measure was suggested by Salisbury and Craig in 1982 (6).
i 3 4y A A 25




Their metric was the condition number of the Jacobian motvix. T 19910 MeAree
et. al. (7) applied another similar measure, the determinant of the Jacobian. to the
grasping problem. All of these measures can be used to avoid singular configurations
of a mechanism. and will find solntions that provide a strong response of the end-
effector to the actuators. They can be characterized as “controllability™ measures.
Another important concept used in redundancy resolution is the potential function.

Nakumura (8) provides an excellent demonstration of its application in robotics.

Screw theory has been widely used in robotics literature to illustrate the dy-
namics of spatial mechanisms. In this thesis, screw theory is an important tool for
characterizing the task to be performed by a robotic device. Ball developed much of
what is now known as screw theory in 1900, providing a compact notation for force
and motion in space. A modern review of screw theory is given by Bottema and
Roth (9). In 1978. Hunt (10) demonstrated its applications in kinematic analysis
of complex mechanisms. Screw theory has seen significant applications in robotics
primarily for grasping theory; see for example, the work of Salisbury and Roth (11)

or Holzmann and McCarthy (12).

In 1980, Ohwovoriole extended basic screw theory for use in machine assembly.
The 1981 paper by Ohwovoriole and Roth (13). defines the concepts of repelling and
contrary screw pairs. These screw pairs complement Ball's reciprocal screw pairs in
characterizing contact between rigid bodies. A repelling screw pair implies a loss
of contact, contrary screws refer to the penetration of one body by the other. and
reciprocal screws are the case for maintaining normal contact. Ohwovoriole also
introduces a virtual coefficient for a screw pair and interprets its meaning in the

context of a fixed bod, in contact with a moving body.

Another area of background knowledge important to the understanding of this
thesis is actuator design theory. In particular, hydraulic motors and DC motors
are considered. since they are the most common types of actuators in modern in-

dustrial robots. Snyvder (14) and Groover (15) give good basic descriptions of these




actuators in a vobotics context. Jones (16) provides more detailed mformation on
the characteristics of DC motors and Hannock (17) clearly explains the principles
of electric braking. For a more comprehensive discussion of hydraulics. Watton (I8)

was a ])I'illl?l['.\' source.




1. Supporting Theory

3.0 Serew Theory

Screw theory provides a compact notation for describing force and motion in
three-dimensional space. This section is intended as a review of the compouents and
properties of screws. A more comprehensive discussion is given i McCarthy (19)

and Hunt (10).

3.1.1 Screw Description A screw represents a line in space that has an asso-
ciated pitch and magnitude. A useful analogy for interpreting the physical meaning
of the components is. not surprisingly. a screw. The centerline of the screw represents
the line, the thread pitch (which determines the ratio of linear motion to angular
motion) represents the pitch, and the magnitude represents the angle through which
the screw is turned. Six independent parameters are required to uniquely define
these characteristics. Thus, a screw can be represented by a six-vector of screw
coordinates

S = (51,32,.‘33.~‘>‘4,S5,Sﬁ) (31)

or more compactly by two vectors s and sg as

S = (S-,S()) (3.2)

When the screw is written in standard form, sq¢ is parallel to s. and can be given as
ps, where p is the pitch of the screw.! In the coordinates given by equation 3.1, the

pitch is

p= L - (3.3)

'When in standard form, gencrally only four parameters are used to describe the screw. This
is because the position of the screw in space is usually obvious from the problem, and a point on
the screw axis is chosen as the origin. If a completely arbitrary origin is chosen, the two other
parameters are needed to specify a point in space that is on the screw axis.

3-1




and in the notation of equation 3.2, 1t becomes

The magnitude of the screw is defined as [|sj]. unless [Isf] = 0. In this case. the pitch
becomes undefined and then the screw is said 1o have infinite pitch and a magnitude

of ||so]|-

3.1.2 Screw Coordinate Transformalion As with vectors, when specific com-
ponents are assigned 1o a screw. a basis coordinate frame is implied. When the screw
is in standard form (i. ¢. sy = ps). then the origin of the coordinate frame lies on the
axis of the screw. Often. however. it is more convenient to describe the screw in a
frame that does not have its origin on the screw axis. Screw coordinate transforma-
tions provide the means ol moving the screw between frames. The transformation
can be derived by considering a non-standard screw and computing its equivalent
standard form. Suppose

S = (w.V) (3.5)

where w and v are not parallel. To put the screw into standard form. the origin
of the current frame must be displaced by a vector d, as shown in Figure 3.1. The
transformation is best understood when the components w, v are thought of as the
angular velocity and linear velocity of a point on a rigid body. Then it is clear that

the displacement d does not affect the angular rotation and

s =w (3.6)

The linear velocity is changed by the displacement and becomes

so =V+wxd (3.7)

3-2




S'=(m.v)

Figure 3.1. Screw Coordinate Transformation

Standard form requires s¢ = ps = pw, so d is found by solving

pw = v+wxd (3.8)

Cross multiplying both sides by w. we can solve for d. and the result is

(3.9)

Note that the transformation does not change any of the defining characteristics of
the screw. The direction and magnitude of the screw are given by the direction of

w, and the pitch is also unchanged as shown below.

p(S) =




w -V

W Ww
= l)( ,\'I)

For a transformation from the standard form 1o a new frame displaced hy —d.

equation 3.7 1s reversed. giving

V = Sg—WwW X d (310)

If the displacement is defined r = (—d), then the transformation is

vV =8§g+tw Xr (3.11)

and

w=s (3.12)

3.1.8  Screw Operations A useful property of screws is that they can be added
vectorially. For two screws Sy = (s1,S01) and 5y = (82.802) the result of adding 5,
and S, 1s

S = S] + 5-2 = (51 + 82,801 + 502) (313)

This can also be expressed in terms of the screw coordinates. but it is then impor-
tant that the screws be given in the same frame. If necessary, one serew must be
transformed by the procedure described in Section 3.1.2 hefore the addition can be

donec.

Another frequently used screw operation is the reciprocal product of screws (13)

(12). Tt is denoted by the “o” operator, and is defined for the two screws Sy, 53 as

S] &) 52 = 83 - Sg2 + S2 - Sp1 (314)
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When two serews are written i standard form. this product can also be expressed
in terms of the geonwtrie refationship of the screws. Given two standard screws
in space. there is a distance. d, along a mutually orthogonal line. and a separation

angle #. about this line. as shown in Figure 3.20 In order to perform the reciprocal

S =(s,.pisy) S,=(s,,p,8,)

Figure 3.2. Relative orientation of two screws.

product, they must be transformed to a common point (', as shown in Figure 3.3.

Then they become

St = {s1,81 X di+p181)

s; = (s2,82 X da+)pas2)

The reciprocal product is

05y =81 - (S2 X da+p2s2) + 82 - (51 X d1+pi8)
= |ls1]llIs2li(pr + p2) cos O + (s1 - (52 X d2) + 82 - (51 x dy))
= |Is1|liis2fl(p1 + p2) cos O + sy - ((s2 X d2) + (d1 X s2))

= ”51””52”(7’1 + p2)cosl + sy - (s2 x (d2 — dy))




Figure 3.3. Transforming screws to a common point.

= |Isalllis2]l(p1 + p2) cos 8 + (dz — d1) X (51 X s2)

Noting that the mutually orthogonal line is along the unit vector (s; X s2)/||s; x sz
and that the second term is the projection of the vector dy — d; onto this line. » can
be written as

r = ||sa|llis2||((71 + p2) cos @ — dsin #) (3.15)

Equation 3.15 is equivalent to equation 3.14 and can be used when two standard
screws are given by their pitch and magnitude rather than by their screw coordinates.
The factor (p; + p2) cos @ — dsin @ contains the information concerning the relative
orientation of the two screws and is named the virtual coefficient by Ohwovoriole

(13).

The reciprocal product and virtual coefficient will be used in chapter IV to

help determine task type and output power.
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2.t.4  Twists and Wienches Two special screws are used to describe the dy-

namics of rigid bodies. These screws are the twist and the wrench.

The twist of a rigid body represents its instantancons motion. The standard
form is written

t = (w.pw) (3.16)

and describes the motion in terms of angular velocity about the twist axis and a
linear velocity along the axis. In standard form the twist divectly describes the
motion of all points in the body that lic on the twist axis. In order to describe the
motion of other points in the body a screw coordinate transformation must be done.
Note that the twist magnitude and direction remain unchanged for all points in the

rigid body, so that the angular velocity is coustant throughout the body.

The wrench uniquely defines the sum of all external forces and moments on the

body. It represents an axis where the forces and moments are aligned and is written

w = (f, p.f) (3.17)

Like the twist, the wrench can be applied to any point in space, on or off the body.
by the use of the screw coordinate transformation. This is particularly useful. since
the wrench may not intersect the physical boundaries of the body when written in
standard form. Notice that the direction of the screw axis is independent of the

point at which the wrench is described.

3.2  Actuator Theory

Any analysis of power use in robotic devices must eventually lead to the analysis
of the device’s actuators. This thesis considers the two most common actuators
in robotics—DC motors and hydraulic actuators. The discussion of DC motors 1s
based on material found in Jones (16) and Hannock (17), and the primary source of

information on hydraulic actuators was Watton (18).
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3.2 DC Motors Robotic actuators must he able to casily control speed or

torque. DC servo-motors are well known for their ability to provide this type of con-
troltabilitv. This section provides the governing equations and torque-specd analysis
for a highly idealized DC motor. Three assiumptions are made in this analvsis. First.
only steady-state characteristics are considered. eliminating terms for inductance and
armature inertia. Second, inefficiencies due to {riction. windage, and core-losses are
ignored. Finally, the armature flux is assumed to be constant. as in the case of a

permanent magnet motor.

With these restrictions, the voltage equation is

Vi= Ri, + bpw (3.18)

where V' is the applied voltage, i, is the armature current. R is the circuit resistance.
w 1s the motor speed, and kg is the motor counter-electromotive force constant. This

is often termed the classical motor equation.

The torque developed under the given assumptions is

T = kyi, (3.19)

in which T is generated torque and k7 is the motor torque constant. Combining

equations 3.18 and 3.19, current can be eliminated, providing the relation

. R
Vie —T' 4 kgw (3.20)
ko
or
vV R

SR 3.2
YT ke hgkr (3:21)

This important equation leads to a useful plot in power analysis, the torque-speed
plot. Figure 3.4 shows how the torque and motor speed of equation (3.21) are related

for constant levels of control voltage.
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Regeneration Region
V=0 —

V>0

SN
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<0 —r \
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Regeneration Region

Figure 3.1 Torque-velocity curves for constant voltage in a DC motor.

The last equation relevant to this discussion is the power equation.  Motor
mput power is the product of the voltage and current in the circuit and therefore

can be derived from equations 3.13 and 3.19:

. k.., ko
[)—_— ‘ = T 7- _'—‘[u.' 3.2
! /\r’;' + " (3.22)

An examination of this equation reveals several noteworthy points. First. it shows
that even when the motor is running at w = 0, or “stall” speed. the power is not
zero for a non-zero torque requirement. Next. consider the case of a DC motor called
upon to provide a negative torque while running at a positive speed. This condition
is known as “electric braking.” liquation 3.22 shows that it can resalt in an input

power that is positive, negative or zero. There are three types of clectric hraking:

1. Regenerative braking - In this method, the DC motor is driven backwards. and
becomes, in effect, a DC generator. Mechanical energy can be converted into

electrical power and returned to the supply.
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2. Dynamic braking - The motor acts as a eenerator i this confignration also.
but the generated power s dissipated across o brakine vesistor. rather than
returned to supphy. This method is nefficient by desten. and also reguires &
sensing and switehine mechanism. 1t will ot be farther considered o this

thesis.,

3. Reverse-current braking - Also known as “pligeing”. this method reverses the
current flow in the motor drawing power from =upply to provide the required
torque. This power and the mechanical power are eventnallyv dissipated as heat.
While plueging is the most inethicient mode of clectrie brakine if the motor is
to be completely Hexible 1 its ability to control speed and torque. then this
tvpe of braking cannot alwavs be avorded (e il one wishes to operate the

motor over the entire torque-speed plot, then sometimes it will have 1o plug).

It can be seen in Fignre 3.1 that the form of electric braking depends on the -
stantancous location on the torque-speed plot. The dividing line is the line of zero
voltage. In quadrant 11, when above this Iine. the motor regenerates. When below.,
the motor is plugging. The relation is flipped in quadrant 1V Obviously. the power
is alwayvs positive when operating in gquadrants T and 1 The ratio of constants,
R/ (ki hy). determines how mnch time is spent regenerating and how much is spent
plugging. Since regeneration obviously provides better energy eflicieney. one would
imagine that the best motor design would be one where this ratio is very small. Un-
fortunately. this results i poor controllability, To see this. imagine that the slope is
near zero. Then for a constant control voltage, a small change in speed would result

in a huge change in torque. Typical servomotors have a slope near negative one.

4.2.2  Hydraulic Actuators Hydraulic actuators also find wide use in roboties
as a result of their many desirable features. They can be made as either rotary or
prisinatic (linear) actnators, and have excellent accuracy, frequency response. speed

range, and power-to-weight ratio. They can also be operated at stall indefinitely
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without damage (11, This section reviews the basie theory of an ideal hvdrandic

actuator coupled with a typical hvdranhe servovalve, as shown in Figure 3.5,

I P /
- T T ~7">ij

.»\c(u;llnr3 - .

tPistom ‘ —_—_l

TN S

[ — -

Valve I., _[_-“ ] ] o L ,j }—>

T

Drain . , Dram
Supph P L Q

Figure 3.5, Hydraulic actuator system piston & spool valve combination.

Several assumptions are made i this discussion of an ideal hvdraulic svstem.
First, the fluid in the svstem is considered to he incompressible. and the structure of
the svstem is assumied to be rigid. so that the volumetric low rate into any section
of the flow must equal the flow rate out of the section. This is a good assumption
in general. and s often made even inmuch more rigorous analyses of hvdraulies.
Second. we assume that there are no flow losses from external leakage or cross-
port leakage within the actuator or valve. This is generally adequate for a high level
analysis. and it will serve for the purpose of itlnstrating the potential advantages and
disadvantages of hvdraulic actuators. It is important to note. however. that leakage
due to underlapping? is often desirable in many servovalves, as it improves the control

characteristics of the system. Nevertheless:its effects on the overall efficieney of the

ZIn hydraulics, an andcrlapped spool valve is one where the width of the ports is greater than
the width of the spool ends, which allows some flow to get to the actuator even when » = 0.
When the width of the spool ends are exactly equal to the width of the ports, the valve is called
eretically lapped. and when the spool ends are wider than the actuator ports, the valve is said (o
be overlapped.




svstem vill be considered negligible for our purposes. Finally. the torgne osses due
to friction will be ignored. This includes viscous friction of the fud tlow. conlomb
friction of the machine parts. and a collection of nonlinear friction components. dne
to hyvdrodynamic. hydrostatic. and stictiou losses. These forees do not change the
dominant characteristics that are of interest in this initial study of power use in

robotics.

Referring again to the system in Figure 3.5. the ideal piston actuator is modeled

by a force eqguation and a velocity equation:

Fr=(P — ) (3.23)

where /715 the force applied by the piston. P and [’ are the pressures in the piston,
A 1s the cross-sectional area of the piston,  is the volumetric flow rate of the fluid
in the piston, and v is the velocity of the piston. The flow rate, @, is determined
by the position of the spool in the valve and the pressure difference across the flow
restriction. For flow into the actuator through the upper right port. the rate is given
by

>0 (3.25)

which is a form of Bernoulli’s pressure/flow equation. In the equation, () is the flow
coefficient, w is the port width, 2 is the spool position. and pis the fluid density. A

similar equation can be written for the flow out of the actuator.

>0 (3.26)

Then, since it is assumed that there is no fluid leakage or compression. Q = Q, =

()2. If the drain pressure is negligible, combining equations 3.25 and 3.26 gives the
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relations,

l)_g — P] - [‘)-2 (;._)T\J

If the load pressure. Py, is delined by:

P[l - [)1 - ])2 (;_)()\)
then
| 1

P = 5 (P + Py) = (P - P)] = 3([)5 - I) (3.30)

and the flow speed then becomes

]). _ [)
Q = Cyuzy | —=——= (3.31)
p

Using equations 3.23 and 3.24, the following relation between actuator velocity and
actuator force was developed
(OR T F

=3 A\ 3.32
AV A (3.32)

Q

Figure 3.6 shows the force-velocity curves for constant x. When linearized. these
plots are somewhat analogous to the DC motor torque-speed plot, where & has the
same function as the control voltage. However, the large variation in operating speed
and force for most robotics applications generally prohibits the use of the lincarized
equation. An important contrast between the hydraulic actuator and the DC motor
is in their operation in the second and fourth quadrants of the force - velocity plots.
For DC motors, this is the regime of “electric braking” and power can be cither
consumed r generated. However, the hydraulic actuator always consumes power

when in these quadrants. In a sense, it is “plugeing”™ over the entire second and
| s 1




fourth guadrants. Although the force-velocity plots are similar. the expression for

\\fclocily Y
\ AN >0

T

Force .F=P, A
S

\

x <0\ ™\’ T
\

Figure 3.6. Hydraulic Force-Velocity Curves.

hydraulic input power is quite different. The power is the product of the pressure
and flow rate supplied to the servovalve by a pump or reservoir. In typical svstems.
the supply pressure is constant. and the flow speed varies with the load requirements.

For the ideal actuator/valve combination. the device mput power is

DP = PsQ (3.33)

Before writing this in terms of the actuator velocity, consider again the case of a
negative force with positive speed. From Figure 3.6, it is evident that this condition
implies x > 0. Examining Figure 3.5, one finds that &+ > 0 exposes the left side of
the piston to the drain port. so no flow returns to the supply. In fact, the flow is
still positive out of the supply. Even though the output power is negative. the inpnt

power is still positive. The same can be seen for positive force and negative speed.
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Therefore. the device power is given hy
DI = PsAje] (3.31)

From this equation, it 1s apparent that when the velocity is zero. the ideal actuator
can exert a force without using any power. However. there is also no control over

the amount of force exerted, as the generated force is a static reaction force.

3.3 Manipulator Jacobian

In robotics literature, the manipulator Jacobian. J.is well known as the matrix
that maps joint velocities to end-effector velocity, The Jacobian can also be nsed
to relate joint torques to end-effector forces for a quasi-static case. Quasi-static is
defined in this context as motion that is slow enough that dynamic terms are not

significant in the true torque equations.

3.3.1 Velocity Relationship The Jacobian is defined by the equation

x = .J6 (3.35)

in which % is the vector describing the end-effector velocity and 8 is the vector
containing the velocity of each joint. The elements of the Jacobian are just the
partial derivatives of the end-effector position coimnponents with respect to the joint
angles. For example, element (1, 1) of the Jacobian is

day

= 5o (3.36)

.]]1

In general, J = J(8), so that the Jacobian varies over the manipulator workspace.

Often the end-effector velocity is known (or its desired velocity is known), and the
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joint velocities must be solved for by inverting the Jacobian matrix:
A —1 .. BT
0=.J"'x (3.37)

When the inverse does not exist (for a square J). it is said 1o be a singularity point of
the workspace. When the Jacobian is not square. as is the case when the manipulator
has kinematic redundancy (see Figure 3.7). then the general solution for the joint

o

[ . ..

¢+ “End-Effector Position
¥} \

? Y

i ‘
Conlig.2 — K >

Figure 3.7. A kinematically redundant arm can reach the same position with many
joint configurations.

velocities is given by

0=J%x+ (- J*))z (3.38)

where J# denotes the pseudoinverse (Moore-Penrose Generalized Inverse) of .J and
z is an arbitrary vector. Note that multiplying a vector by (/ — J#.J) is equivalent
to projecting the vector onto the null space of J, so any component of 0 created by
the second term does not map into end-effector velocity space. The first term, J#x,

provides the minimum norm solution for @, but the choice of the z vector can be
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used when alternate kinematic striuctures are desired for other reasons. such as task

priority or singularity avordance (&),

3.3.2  Aorque Relalionship ‘The torque relationship for an open chain mecha-
nism is derived from the Jacobian definition, equation 3.35. and from the principle
of virtnal work (21). For closed chains. there exists the possibility of actuator re-

dundancy, which can provide an infinite number of solutions for the joint torques.

3.3.2.1  Open-Loop Rclationship Consider a force applied to the end of

a two-link serial arm as in Figure 3.8, If the end undergoes a virtual displacement

Figure 3.8. Virtual Displacement.

éx. then the corresponding displacement of the joints is 06, which is related to 6x
by equation 3.35, or

éx = Jé0 (3.39)

The total work done by the system is the sum of the work done by the external force

and the torque in the joints,

sW o= L ox+ 7760 (3.40)

ert
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oW = £r,766+ 7768 (3.11)

oW = (£, +77) 50 (3.12)

Since no real work is done, 6W = 0 and since this must hold for all virtual displace-
ments. including 66 # 0. then

0 = fLJ+7" (3.43)

T = —fL,J (3.14)

T = I, (3.15)

Using the assumed equilibrium condition of the system. the force applied by the
manipulator must be equal and opposite to the external force. or f = —f, ;. Then

the force applied by the end-effector is related to the torque of the joints by

r=J7f (3.46)

3.3.2.2  Actuator Redundancy For open-loop mechanisms. all of the
joints must be actuated in order to control the position of the end-effector. However.
for closed-loop devices. actuation of all the joints is seldom necessary. When more
joints are actuated than is necessary for control, the mechanism is said to have
actuator redundancy. Another means by which actuator redundancy can occur is
when an open loop mechanism makes contact with the environment. In this instance,
kinematic freedom may be lost, but actuator freedom may be gained. Figure 3.9
shows a four-bar mechanism with actuation at two joints. It is well known that the
four-bar mechanism only requires one actuated joint to be completely controllable.
Therefore the mechanism shown has one redundant actuator. The goal is to express
the actuator torques of the closed loop mechanism in terms of the torques required
of an open loop mechanism, which can be found by equation 3..46. One method for

dealing with actuator redundancy is given by Nakamura in (8).
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O Virtually Actuated Joint
O Actuated Joint

Figure 3.9. Four-Bar Linkage with Redundant Actuator.

First, imagine the mechanism is cut at joint 4. For the new mechanism to be
controllable, joint 3 must be actuated. so it is given a virtual actuator. The vector
of joint angles, 8 = {#,,6,.603} can be divided into actuated angles 8, = {0.,0,} and

virtually actuated angles 8, = {#3}. Now @, can be written as a function of 8.
93:7{'*}-0] (;“_)

Then the joint velocities 6 can be written

6 = G6, (3.43)
where
I 0
G ! 3.4
7 = 502 = 0 1 (;1))
56 1o

Now express the actuated joints in terms of a basis set of these joints, 844, where

6, = S610 (3.50)
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For this example, 8,9 = {#,} 15 a basis set. and

since §, = 21 — ;. Then using virtual work. Nakamura shows that
str, =sTalr (3.52)

a

where T, is the vector of actuated joint torques and 7 is the vector of open loop

torques, including virtual torques. The general solution to 3.52 is
7o = (ST#STCTr + (1 — (ST)#5Ty (3.33)

in which y is an arbitrary vector. Using a property of pseudoinverses, (SS5#)7 =

SS# . the equation can be written
.= SS*CTr 4+ ([ - 55%)y (3.54)

Then the vector of open loop torques, 7, can be written in terms of the force applied

by the mechanism by using the Jacobian of the virtual open-loop mechanisi.
r=J'f (3.55)
Now the equation becomes
T, = SS*GTITE + (1 — 55%)y (3.56)

This provides an expression for torque similar to the expression for velocity in the
kinematically redundant case. The first term will counteract external forces while

the second, arbitrary, term allows one to vary the internal torque distribution in the
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mechanism. The usefulness of actuator redundancy will be studied in greater detail

m chapters [V and V.
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IV. Power Analysis

4.1 Task Definition

The description of all possible tasks for a robotic device in three-dimensional
space is very complex. However, on an instantaneous basis, the task can always be
described by the twist of the end-effector or tool and the wrench applied by the tool
to the environment. For example, consider a grinding tool on a curved surface, as
m ligure 4.1. The task is defined instantaneously by the twist (w,v) and wrench
(f.m) of the tool. These are often initially known (byv measurement or estimation) at
different points on the body——the figure shows the wrench at point 2 and the twist
at point €. As shown in chapter [I1, the two screws can be written at a common
point. For this example, the point C can be defined as the tool center point (TCP),
and at the TCP the twist and wrench would be (w,v) and (f.(p —¢) x f + m),
respectively. Hereafter, we define fask to mean the twist t = (w.v,..,) and wrench

w = (f.myp) at the TCP.

The task can be further characterized by the relative mmagnitude and orientation
of the twist and wrench. All tasks can be divided into three task tvpes: kinetic,
reactive, and manipulative. These types are somewhat arbitrary, but some general

guidelines for planar tasks are:

o A kinetic task is one wherc the twist and wrench screw axes are parallel and

their magnitudes are of the same order.

o A reactive task is defined by perpendicular twist and wrench axes and a wrench

magnitude much greater than the twist magnitude.

o A manipulative task 1s defined as a task where the twist and wrench axes
are perpendicular and the twist magnitude is much greater than the wrench

magnitude.
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Tool 7

Environment

Figure 1.1, Task Example.

Figures 4.2 — 4.4 illustrate these task types. Most real tasks will be a combination
of these task types, but can be referred to by the type that they most closely re-
semble. For example. a task that is dominated by the motion of the end-effector
may have a wrench component parallel to the twist, but still would be considered
a manipulative task for the purpose of selecting an appropriate metric (o measure

task accomplishment.

For completely general spatial tasks, the task type is harder to distinguish. One
indicator of task type is the virtual coefficient of the twist and wrench, described in
chapter IlI. For a task defined by twist t = (w.pw) and wrench w = (f.p,. f). the
virtual coefficient is

ve = (p; + po)cost — dsind (4.1)

A kinetic task is defined by jvc] > 0, while |ve] & 0 is characteristic of reactive
and manipulative tasks. In the latter case, the task screw magnitudes arc used
to distinguish between reactive and manipulative task types. When the wrench

magnitude dominates the twist magnitude, the task is mostly reactive, and when
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Figure 4.2, Kinetic Task Example (Lifting).
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Figure 4.3. Manipulative Task Example (Moving without a load).
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Figure 1.1. Reactive Task Example (Holding a load in a gravity ficld).

the twist magnitude is largest, the task is mostly manipulative. .\ 1more precise
definition is not necessary. since the task tvpe is only important in selecting an
appropriate metric, and for marginal cases one can stmply apply more than one

metric and choose the most appropriate result.

4.2 Power Analysis

The power efficiency of a task is generally written in one of the following forms:

Power Out Power Out Power In - Losses (1.2)
n= = == - .2
Power In Power Out -+ Losses Power In

Inach of these elements is examined in the context of a task and robotic deviee, and

where possible, and expression for the power in terms of the task screws is detived.

4.2.1 Output Power Power is defined as the rate at which work 15 done.

Mechanical work is generally defined as the product of a force and the distance

11




over which the force acts. Using this definition. if the force 1s constant. power is
the product of the force and the velocity, When given the twist and wrench of a
robot end effector. the calculation of its output power is a straightforward process of
applyving the screw reciprocal product. For the task t = (wovp ). w = (f.my ).

the reciprocal product 1s
Power Out = wot =1 -vyep 4+ w mypep (1.3)

Obviously. the vector dot product of force and linear veloaity summed with the dot
product of the inoment and angular velocity captures all of the real power delivered
by the device to the environment. This expression is useful in that no device specific

information is considered—-the output power depends onlyv on the given task.

This definition is satisfactory for many important tasks. such as lifting an
object in a gravity field, or sliding an object across a rough surface. However, the
function of a machine does not always produce an output which can be measured in
terms of real power. Consider the task of moving an object horizontally in a gravity
field, as shown in Figure 1.5. For this casc. the real power out is zero. which would
lead typical efficiency metrics to calculate a zero efficiency in completing the task.
Yet the input power is not wasted, since a useful job was done. The power provided
to the actuators to counter gravity is termed “reactive” power and depends on the
actuator type and the geometry of the mechanism. This example demonstrates that
the output quantity vsed in an efficiency metric need not be real power. but may be

whatever quantity one considers to be “useful.”

4.2.2  Power Losses Power losses are most often attributed to nonconserva-
tive processes such as friction, motor windage, transmission backlash. ete. These
types of inefficiencies are well modeled (if not always well-understood) through the
use of experimental evidence, and are more appropriately the domain of the actuator

engineer. This paper assumes nearly ideal actuators in order to highlight two other




Figure -1.5. Transport Task.

tvpes of losses peculiar to robot-like mechanisms. These losses are the result of 1)
actuators working against each other; and 2) actuators working against a stationary

environment.

The first loss has been described as “backwork™ (3) or “geometric work™ (1).
An illustration of how actuators can work agaiust cach other is given in Figure 1.6.
The task is lifting an end load in a gravity field by a two-link serial arm. To produce
a change in height of Ay, the actuators must move the joints through incremental
displacements of A, and Af,. If the result of each of these displacements is exam-
ined serially. instead of simultaneously, it is seen that Af; carries the load above the
required height, while Ay lowers the load to correct the deviation. This indicates
that the first change requires power exceeding the output power, and the second
change produces power equivalent to the excess needed in the first change. However.
if the actuators require positive power to drive both rotations. the sum of the actu-

ator power would exceed the real output power. The difference hetween the input
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Figure 1.6, Geometric Work.

and output 1s termed geomelric power. Geometric power is a loss that depends on

the configuration of the device, actuator type, and the assigned task.

The second loss is described as the effect of working against a stationary envi-
ronment. Suppose the task is erasing a blackboard, as shown in Figure 4.7. While
actuator power is required to overcome friction in moving the eraser across the board.
power is also used in pressing the eraser against the surface. The power used to gen-
erate this normal force 15 termed “reactive” power. Bevond a required minimum.
the normal force is unnecessary for task accomplishment, and hence the reactive
power is wasted. Note that thisis the same type of power referred to in section 4.2.1
as an alternate output power. In fact, whether reactive power is a loss is entirely
dependent upon the task designer’s point of view. Like geometric power. reactive

power loss is also dependent on hoth the device configuration and the task.

4.2.3 Input Power The subtle nature of the geometric and reactive losses
makes it difficult to provide an expression for them directly. Therefore the best
approach is to add together the power required by ecach actnator to create the total

input power or “device” power. Then the device power can be expressed in terms of
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Figure 4.7. Erasing a Blackboard.

the task and efficiency can be found as the ratio of power output (or other quantity)

to power input, bypassing the need for the direct formulation of the losses.

Using this approach, an equation for device power of a robot with » actuators

DP =3 DP, (4.4)
=1

I’th

where DP; is the input power ol the i*" actuator. For now, assume that DP, is

a known function of the torque and velocity required of the actuator. or DP, =

DP(7;,0;). Then if torque and velocity vectors are defined by




Now the description of device power in terms of the original task twist. t.
and wrench. w, can be derived by transforming the vectors from joint space to
task space. This is done through the nse of the manipulator Jacobian. as shown in
section 3.3, Iiquation 3.35 can be used to relate 6 10 t. However, since the standard
Jacobian in robotics literature gives rotational information in the bottom three rows.
and the standard twist has the angular velocity as the first three components. a

transformation matrix, 7', must be added. Then the equation becomes
Tt =./0 (4.5)

where the 17 matrix is defined by

[0 0o o | 1 0 o
0 0 0 | 0 1 0
o 0 0 | 0 o0 1
T=( -0 —— —— | == —— —— (4.6)

Then the mapping from joint space to task space is given by
6=J"'Tt (4.7)
when the robot is not kinematically redundant. If it is redundant, then the expanded

form

6=J*Tt+ (1 —J* )z (4.8)

can be used.
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Similarly. the joint torques are related to the wrench by!

r=J'w {1.9)

when the robot does not have actuator redundancy. If actuator redundancy does
exist, then the torque equation must be modified to allow for the choice of torque

distribution over the actuators, as shown in section 3.3.2.2.

Actuator redundancy only occurs for closed loop mechanisis. but often open
link robots will behave as a closed loop when in contact with the environment.

Counsider a two link arm turning a crank, shown in Figure 1.8, Although the robot

Figure 4.8. Turning a Crank.

1s an open loop serial arm, if the end in contact with the crank can be considered
a pinned joint, then the robot gains actuator redundancy. In such cases. the open

loop torques obtained from equation 4.9 would represent only one of the possible

!No transformation matrix is needed here, since the moment component of w is given by its last
three elements.
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solutions. The general solution is

T, = 5‘5'#(;’]/7‘“’ '*_ (/ - SS'#)}’ (! IU)

This procedure is also applicable to grasping an object with multiple fingers.
since the combination of the fingers and object form a closed chaim. as shown in

Figure 4.9. The arbitrary term in equation 4.10 is then directly related to the

Figure 4.9. Planar Grasp.

internal force of the object.

In the preceding discussion, it was assumed that the device power of each
actuator was known as a function of its torque and velocity. so that the total device
power could be written as a function of the task screws by combining equation 1.4
with the appropriate joint velocity equation (4.7 or 4.8) and joint torque equation
(4.9 or 4.10). In order to determine the actual functions D P,-(T.G.). the model for the
actuator type must be used. For DC motors, the input power is given by equation
3.22,

A‘E
TW

R
._7-2 +

P =
]\.% ket
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Substituting this into equation -1.1. the device power for a DC motor driven robot

(1.12)

1

t

. )
is°
I the robot has no redundancy. then this can be written in terms of the task serews

by using equations 4.7 and 1.9:
- I) 1 T I‘DL T
DP = —(w'JJ'w)+ —(w'Tt)
k3 by
When the mechanism is redundant. the more general equations should bhe nsed.
These equations are given helow.
Kinematic Redundancy
R kg o
DP = —(w'JJTw) + -A—[:(w',’/'t) (1.13)
2 "

Actuator Redundancy
Rt 1ot pd T T G
DP = — {w JGSSTG ] w+ y (l—hb#)y]
+-E WG s* I T 4y (1 - SSHYTTE] (L)

= =

1

Kinematic and Actuator Redundancy
[WTJ GSSEGT I W + y" (1 - 55#)y]
15)

- =
+fli [w‘ JGSSEFIRTL +yT (1 = 55%)T7 "1t
7
+wlJGSS*F(I — J# )z +y (1 - SS*)(I — .1#,1)z] (4.1

Dp

2This assumes that all of the motors have the same motor constants.

1-12




Notice that for the case of the simple kinematic redundancy. the arbitrary
vector z is not present. The physical mterpretation of this is that for DC motors.
when the redundancy 15 used to change the jomt velocities a decrease in inpnt. power
for one actuator exactly matches the imcrease in another actnator. Hence. the total
device power 1s constant for a given configuration and task regardless of how the joint
velocities are distributed. This does not eliminate the usefulness of power analysis
in the resolution of kinematic redundancy. as will be shown in section 5.1.2

When hydraulic actuators are substituted for the DC motors. the device power
cquations have a significantly different charvacter. due to the difference in how the
hyvdraulics make use of power. The hydraulic actnator power is given by equation
3.33:

DP = PQ

This equation can be rewritten for hvdraulic motors using the substitution
Q= D_|0] (4.16)

in which D, is a motor constant that represents the volumetric displacement of fluid
in the motor per radian of angular movement. It is analogous to the cross-sectional

area, A, in the piston actuator. Then device power for a motor is
DP = PsD_|) (4.17)

Substituting this into equation 4.4, the device power for a hydraulic inotor actuated
robot is

[W:i&mM} (4.18)
=1

Then in terms of the task twist, device power is

3In combination with actuation redundancy, z does appear, because then the choice of joint
torques can affect the balance of power that exists when the redundancy is purely kinematic.




Non-Redundant

DP =P’ L1 (1.19)

Kinematic Redundancy
DP = Pshn'[J*¥1t + (1 — J*.) )z (4.20)
im which n is a vector of ones. n = {1.1,....1} and |[{vector}] indicates a vector

comprised of the absolute values of the elements of {ceclor}. The equation for
the kinematically redundant case shows that the arbitrary choice of joint velocity
distribution can have a direct effect on device power. in contrast to the DC motor
case. However, actuator redundancy does not have any direct effect. since the power

is not a function of the task wrench.

Although there is no direct method of minimizing device power for the actuator
redundant case, there are benefits to making the proper choice of torque distribution
in the redundant case. Consider the efficiency of a single hydraulic motor
_ Pouw 0 D.Po Py

2= = =+ 4.21
Po PsQ  PsD,|0] Ps (4:21)

When § > 0. then the actuator efficiency 1s maximized by letting the torque require-
ment approach the maximum torque, Pp — Ps. When f < 0. the least wasted power
is attained by minimizing the torque requirement, Py, — 0. If this principle could be
incorporated into the control scheme, then the actuator redundancy might be used

to achieve a better overall efficiency.

4.3 Power Efficiency Metrics

In order to use the preceding analysis effectively in robot design, task planning,
or joint control, an efficiency metric is required. The type of metric appropriate to a

task is often dependent on the task itself. For example, when designing an airplane
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for extended range. top speed may be relevant. but it 1s not the best indicator of how
far the plane can flv. The same appears to be true in this analvsis. As noted carlier.
when the standard measure of efliciency is used for a reactive task. a low result
occurs even thongh the job may he completed in the most efficient wayv possible.

Therefore. three different metrics are proposed. one for each of the three task types.

For kinetic tasks, the familiar efliciency measure is appropriate. Kinetic effi-

clency s defined as

Output Power wot (122)
I = - - 1.22
I Input Power Dpr

in which the output power is the reciprocal product of the task screws as defined
in section L.2.1. and DP is the appropriate device input power for the task and

actuator tyvpe.

For reactive tasks. the reactive efficiency is given by

wrench magnitude  ||w]|

©23
Input Power DpP t"=3)

nrR =

where the wrench magnitude, ||w]|, is given by the standard Euclidean norm for a

6-vector.

For manipulative tasks, the efficiency is defined

M = (421)

el
DP
where ||t|| and DP are given in the same manner as for the other metrics. The
reactive and manipulative efficiencies represent the ratio of the size of the significant
output of the task to the output power. They will not result in a standard efficiency
in the range 0% - 100%, but higher values of the metric clearly indicate more efficient
use of the power. The measures are analogous to a standard metric for automobiles,

miles per gallon. Miles travelled represent the magnitnde of the motion, and gallons
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are a measure of the energy required to complete the trip. When intearated over

path, 7y would Lo a neadv identical metric.

4-16




V. Applications

Power efficiency can be used ina wide variety of wavs in roboties. To demon-
strate the range of possibilities. a few simple examples will illustrate the use of power

analysis in five areas:

1. Task/Workspace Planning
2. Actuator Selection
3. Manipulator Kinematic Structure Selection

4. Kinematic Redundancy Resolution

5. Actuator Redundancy Resolution

5.1 Task/Workspace Planning

Consider a two-link serial manipulator, driven by DC motors, performing the
open loop task of lifting a load in a gravity field (see Figure 5.1). The task screws

for this planar task degenerate into vectors,

w="f=(f /)"

—_—
Jt
e
~—

t =v = (v, vy)T (5.

o
S
—

Since the lifting task has collinear force and velocity (they are both vertical), it is a
kinetic task. Then the appropriate metric is the kinetic efficiency given by equation

4.22,
wot
DpP

NN =

The output power is (for this task, f, = v, = 0)

wot=f-v=Ffu, (5.3)

e |
v




| |

Iigure 5.1, Lift Task.

And the device input power for a non-redundant DC' motor driven robot is given by

equation 4.12

R . ko .
DP = —(f10J7f) + ~(f"v)
ki by
The manipulator Jacobian for a two-link is
—{ 8] — (281 — U8y
J = (5.1)
a1y — Uy —{C)2

in which @), a, are the link lengths, and sines and cosines of the joint angles are

represented by the notation sinf; = sy, sin(#; + 0,) = sp0.

Since device power is a function of J, and J is a function of position. it is
apparent that DP = DP(x,y) for a fixed task. Then one method of optimizing
power efficiency is to find the best location for the task relative to the base of the

arm.




This optimum location could be found by a number of means. but the simplest
method for showing the eflect of location on eflicieney s a contour plot of the effi-
ciency. This type of plot allows the engineer to quickly identify the best operating

regions for robot-task combination.

To provide numerical results. the task was modeled by defining f, = 11h.
r, = Upst, and the robot was modeled as having link lengths of ay = a3 = 0.5t and

typical DC motors for actuators. The motors™ constants are:

by = Hloz-in/A

= 0.28125t-{h /A
ko = A0V/krpm

= 0.3820V /rad/scc
R = 059

The efficiency is shown for the first quadrant workspace in Figure 5.2. For
this plot, the inverse kinematic equations generate the “elhow down™ solution for
the joint angles. The lightest regions represent an efficiency of 91% or greater. while
the black regions represent an efficiency of less than 9%. The white regions are out
of the reachable workspace. which is bounded by the circle +* + 4% = 1. The rough
edges are the result of the resolution of the plotting method. and do not indicate
any real phenomenon. While the plot was designed to show the power efficiency
for an instantaneous lift task at different points in workspace. it is also usetul to
note that one can use i1 to determine the average efficiency in hfting a specified
distance as well. For any rertical line drawn on this plot, the total energy expended
in lifting a load at constant speed along the line could be found by integrating the
efficiency along the line and then multiplyving by the total output work (mgAh).

There are several conclusions that one can draw from an examination of this plot.

PThis is the equivalent of U705 watts of output power.
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[igure 5.2.  Lift Task Efficiency for Two-Link Serial Arm w/ DC Motors (“Elbow
Down™). The lightest region represents gy > 91% and the black region
represents ny < 9%.

First, as one would expect. the efliciency drops off to zero as the edge of reachable
workspace is approached. Very large joint speeds and torques are required for small
motions and loads in this region, and at the very edge, a degree of freedom is lost.
At full extension, (#; = 0°), it is impossible to move up along a vertical path.
It is therefore reasonable that the efficiency should decrease as this condition is
approached. Second, the efficiency generally improves as the r-position decreases.
This is indicative of the reduction in the torque requirements at each joint as the
load moves closer to the arms base at (z,y) = (0,0). One intuitively expects this,
since the moment arm is shorter. The efficiency then increases as the joint torques

decrease, because the device power is a strong function of the joint torques.

Aside from optimum location, there is another option that a planner could

consider. This is the choice of the “elbow up” or “elbow down™ configuration for

e
v
—




the arm (see figure 5.3). While space and mounting considerations mayv dictate this

(x.y)
- (x,y)

Elbow Down Elbow Up

Figure 5.3. “Elbow-Up™ and “Elbow-Down” Configurations.

choice, it is still useful to study the efficiency of this configuration to see if any

significant differences are present.

Figure 5.4 shows the efficiency using the elbow up solution. Note that the
predominant features of the elbow down solution are still present. Efficiency is zero
at the workspace edge, and efficiency iimproves as 2-position decreases. However, the
general character of the plot has changed noticeably. While the average efficiency
in the @ = 0.2ft region was 65-70% for the clbow down configuration. it is only
around 45-50% for the elbow up configuration. This is due to the greater moment
arm for the second joint in this case. Figure 5.5 shows the torque-speed variation
of each actuator during the lifting task executed at » = 0.2ft,y = 0.1 — 0.8. Since
the moment arm is constant for the first joint, the torque for the first actuator is
understandably constant. However, for the “clbow up” configuration. the speed of
the first actuator varies significantly, taking it from normal operation in quadrant [
through the plugging region and into the regeneration region. This is one cause of the
large variations in ctficiency seen in Figure 5.4. The second joint does have a varving
torque and it is different for each case. Comparing figures 5.2 and 5.4, one can see
that even when the elbow up configuration has the first joint in a regenerative mode,

at y = 0.8, the elbow down configuration still provides a better overall efficiency.




Iigure 5.4. Lift Task Efficiency for Two-Link Serial Arm1 w/ DC Motors (“Elbow
Up”). The lightest region represents iy > 91% and the black region
represents nx < 9%.

Given this comparison, one can conclude that for this robot and task, the job
should be done close to the shoulder with the elbow down. This is not a remarkable
discovery, as it is already intuitively obvious. This 1s generally the way a person
would lift a heavy load with their arm. However, the analysis can readily be applied

to a more complex robot or task.

5.2 Actuator Selection

In the previous example, the actuator type was arbitrarily chosen to be a DC
motor. In reality, this choice requires careful consideration. since it can have a
dramatic effect on the efficiency of the robot. In this section, hydraulic and electric
actuators will be compared using the same two-link serial robot and an assortment

of simple tasks. As in the previous section, the task screws are given by equations
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Figure 5.5. Lift Task in Joint Space for Two-Link Serial Arm.

5.1 and 5.2 and the manipulator Jacobian is as shown in equation 5.4. The efficiency
measure will vary with the task being compared, and so the device input power will
be given by either equation 4.12 or 4.19. For a fair comparison, the constants in
these equations will be normalized to eliminate differences in magnitude. This is

necessary since no data was available for typical actuators of comparable size.?

To nondimensionalize the DC motor, the method given in (16) was used, in
which the fundamental units are based on the rated full load condition of the motor.
One unit of angular rotation is equal to the rated full load speed, one unit of torque
1s equal to the rated torque, one unit of current is equal to the rated current at
full load, and other units are derived from these units. Under this convention, the
constants kg and kr become unity. Then the only constant left to choose is the
resistance, K. Typically, DC servomotors have negative slopes of the order of 1 on

the torque-speed plot, because this provides good controllability. For example. the

2In general, DC motors have less torque capability than hydraulics.
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motor used as a model in the previous section has a slope of —1.65. From equation
3.21, the slope is seen to be =R/ (kphy). so using a slope of —1, £ can be found by

solving for R in terms of ky and Ay

|- R
N A'E/\‘y'
R = kgkr {3.5)
Then since kg = by = 1. R = | and the device power equation becomes
DP =1 + v (3.6)

For the hydraulic case, the equation is nondimensionalized by dividing by the
operating pressure, Ps. and the motor constant D,,. This is equivalent to letting a
unit torque equal the peak torque and a unit speed equal the motor constant. Then

the device input power equation is

DP =nT|J v (5.

ot
-1
~—

Five tasks were chosen to illustrate the differences in the actuator types. Thev

are:

Lift Task As before, moving an end load vertically in a gravity field. This is a
kinetic task with f = {0,1},v = {0.1}.

Hold Task Holding an end load stationary in a gravity field. This is a reactive task
with f = {0,1},v = {0,0}.

Slow Transport Task Moving the end load slowly along a horizontal path in a

gravity field. This is similar to the Hold Task, and is also reactive, with

f={0,1},v={01,0}.




Fast Transport Task \oving the end load quickly along a horizontal path. In

this task. the motion is the primary output. so it is a manipulative task. with

f=1{0,0.1}.v={1.0)}.

Kinetic Transport Task Moving the load up along a hne of slope one. This is a

. . . . . 7 -
combination of the lift and transport tasks. with f = {0. [}. v = {¥=. T\(}

In all the examples of this section. the elbow down configuration was used.

Figures 5.6 and 5.7 show the lift task efficiencies for the DO motor and the

hyvdraulic motor cases, respectivelv. The DC motor driven robot is essentially the

Figure 5.6. Lift Task Efficiency for Two-Link w/DC Motors. The lightest region
represents 4 > 91% and the black region represents nyy < 9%.

same as was shown in the previous section, with the highest efficiency occurring near
the shoulder. The differences between Figures 5.2 and 5.6 are a result. of the change
to normalized motor constants. The efficiency plot for the hvdraulic case is signil-

icantly different than for the electric case. The highest efficiency occurs when the




Figure 5.7. Lift Task Efficiency for Two-Link w/Hydraulic Motors. The lightest
region represents 7y = 50% and the black region represents nx < 9%.

arm is stretched out horizontally. This is predictable since the device power depends
only on joint velocity, and for low joint velocities given a fixed lift rate, the horizon-
tal distance from the joint to the load should be maximized. The greater torques
resulting from this solution do not affect the actuator’s efficiency. Another difference
not readily seen from the contour plots is that the overall average efficiency is much
lower for the hydraulic case. The lightest region of the DC motor plot represents
nk ~ 95%, while on the hydraulic plot, it represents nx =~ 50%. The low hydraulic
efficiency is the result of two things. First, an individual hydraulic motor can only
run at 100% efficiency when the load pressure equals the operating pressure. This

condition also equals the maximum torque possible for the motor, so the motor is




rarelv operating near 100% efficiency.? Second. whenever the actnator is providing
torque and speed with opposite signs. it continues to draw power. rather than gener-
ate power. Compared to the DC' motor case. one could say that the hyvdranlic motor
is always “plugging,” and cannot regenerate. Whenever the actuators are working
against each other, this causes lost “geometric” power and reduces efficiency. This
condition is not the dominant cause of mefficiency. however. because the actuators
are only operating in quadrant 1V of the torque speed plot for a small portion of
workspace.

Now consider the hold task. This i1s a reactive task, so the reactive effliciency
measure 7 is used. Figure 5.8 shows the performance of the DC motor. The
appearance of the plot is quite similar to figures 5.2 and 3.6. The only difference
between the hold task and the lift task is in the velocity required of the actuators.
Therefore, this similarity is expected, since the efficiency of a DC motor is primarily
dependent on its terque requirement, not on the velocity requirement. No plot is
shown for the hydraulic case, since the efliciency is infinite throughout its entire

workspace. This is seen from the efficiency equation,

S LI I
nlJ-v] 0
This illustrates an important characteristic of the hydraulic-driven robot -- it re-

quires no power to oppose a force when it is stationary.”

The slow transport task provides an example similar to the holding task, but
allows one to examine the effect of motion in a reactive task. The efficiency of the

DC motor case is given by Figure 5.8, just as for the holding task. The plots are

3Another problem with operating near maximuin torque is that the maximum joint speed ap-
proaches zero as the torque approaches maximum torque, a property seen by referring to the
torque-speed plot in Figure 3.6.

AThis is only true for the ideal hydraulic actuator. Any practical hydraulic actuator would
require a small amount of power to counteract leakage in the system. Nevertheless, the power
required to hold a load is much lower for a hydraulic systemn than for an electric system.
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Figure 5.8. Hold Task & Slow Transport Task Efficiency for Two-Link w/DC Mo-
tors. The lightest region represents np = 6 and the black region repre-
sents nr = 0.

identical because the f7v term in the device power equation is still zero because even
force and motion are orthogonal. The efficiency for the hydraulic case 1s shown in
Figure 5.9. The best performance is obtained by positioning the end-effector near
the top of the workspace, where joint velocities are the lowest for the horizontal
motion. The approximate range of values on this plot is 0 to 8, including a large
region of workspace > 5. Since this performance is only equaled in a small area of
the workspace for the electric case, it is evident that the hydraulic actuator driven

robot is generally more efficient in completing tasks of this variety.

The fast transport task is essentially the same as the slow transport task, except
the emphasis has moved from force to motion. It represents manipulating a light load
at high speeds. An example of this type of task is arc welding, where the only load

is the weight of the welding rod, which is moved quickly from point to point above a
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Figure 5.9. Slow Transport Task Efficiency for Two-Link w/Hydraulic Motors. The
lightest region represents np = 8 and the black region represents np ~ 0.

surface. This is in the category of manipulative tasks, so the metric na; was used to
judge performance. Figures 5.10 and 5.11 show 5y, over the workspace of the robot
for the electrically and hydraulically driven cases, respectively. Topographically.
these plots are identical to those found for the slow transport task. However. the
performance index 5y ranges from 0 to 650 for the DC motor and between 0 and 0.9
for the hydraulic motor. Almost all of the workspace for the electric robot provides

higher performance in this task than the hydraulic robot.

The final exanmiple, kinetic transport, is a combination of lift and transport.
with ||f|| = |lvl]. This is a kinetic task, so the kinetic efficiency metric was used.
The efficiency of the DC motor case varies from 0% to 97% in a familiar pattern.
shown in Figure 5.12. The efficiency is almost the same as for the lifting case, with
only minor variations in the distribution. The torque requirements for cach joint

are the same as for the lift task, so the similarity is not suiprising. [fowever. the
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Figure 5.10. Fast Transport Task Efficiency for Two-Link w/DC Motors. The light-
est region represents 77ps = 650 and the black region represents na; = 0.

hydraulic efficiency, which is much more sensitive to changes in the velocity portion
of the task, presents a quite different pattern than the one seen for the lift task (see
Figure 5.13). Rather, the plot is seen to be a blend of the lift and transport tasks
(compare this plot with figures 5.7 and 5.9). The efficiency ranges {rom 0% to 40%
with the optimum region occurring above the shoulder at about two-thirds of the
inaximurn reach. Overall, the electric-driven arm appears to provide better power

efficiency for this task.

One would need much more specific information about the range of task re-
quirements to decisively determine which actuator type is the best choice. but some
general guidelines are clear from this analysis. First, over the majority of the
workspace, DC motor driven manipulators are more efficient for kinetic and ma-
nipulative tasks, while hydraulics are more efficient for reactive tasks. The welding

task mentioned earlier would probably be most efficiently done with DC servomo-
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Figure 5.11. Fast Transport Task Efficiency for Two-Link w/Hydraulic Motors.
The lightest region represents ng =~ 0.9 and the black region repre-
sents s = 0.

tors, while slowly moving a heavy load is probably best done by hydraulic motors.
Second, the optimal performance regions are quite different for hydraulic and electric
actuators. This could be an important option for a designer if the entire workspace is
not available. For example, for a lift task. if the work area was cramped, the elhow
of the arm could get in the way when the end-effector was close to the shoulder.
Then the hydraulic actuators might be appropriate, since it performs best without
bending the arm at the elbow. One could easily provide a similar scenario in which

DC motors would be better.

5.3  Manipulator Structure Selection

In addition to aiding in the selection of an actuator, power analysis can also

be used in determining the appropriate kinematic structure to use for a given task.




0.

Figure 5.12.  Kinetic Transport Task Efficiency for Two-Link w/DC Motors. The
lightest region represents i = 95% and the black region represents
nK S 9%

This section will compare a massless parallel type manipulator to the massless serial
manipulator used in the previous sections, and the effect of varving link lengths in

the serial arm will also be briefly explered.

A 2-DOF parallel arm is shown in Figure 5.14. Both motors are at the base
of the manipulator, and independently control the joint angles #, and #,. The end-
effector position is described in the same way as for the serial arm. by angles 6,.0,

and lengths a;,a,. From the geometry it is evident that

0, =0, +0, (5.8)
Differentiating this relation, the equation becomes
0, = 0, + 0. (5.9)
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Figure 5.13.  Kinetic Transport Task Efficiency for Two-Link w/Hydraulic Motors.
The lightest region represents nx ~ 40% and the black region repre-
sents nx < 5%.

This relation can be used to derive the parallel Jacobian from the serial Jacobian:
Jp = ' ) (5.10)

This Jacobian relates the end-effector velocity to the joint velocities at the motors.
01,9;, but is shown in terms of #,,8,. The inverse Kinematic eqnations used to
find 0,,0, are then identical to the ones used for the serial arm’s “elbow dov "
configuration. Using the normalized equations for a DC' motor actuated robot. the

device power for a parallel arm is given by

DP =" 0+ v (5.11)




Figure 5.14. Parallel Type 2-DOF Manipulator.

which 1s identical to equation 4.12 except that .J, 1s substituted for .J.

Now to judge the efficiency of the parallel arm, consider its performance of
two tasks that have heen previously shown for the serial arm. the lift task and the
fast transport task. Figure 5.15 shows the kinetic efficiency (55 ) of the parallel
manipulator in the first quadrant workspace. The efficiency varies from 50% to
100%, although the plot still shows the drop to 0%. which is the set value given to
areas outside the reachable workspace. Compared to Figure 5.6, it is apparent that
the parallel arm is more efficient than the serial arm over a wide range of workspace.
although in the vertical band near @ = 0.2, the serial arm can compete. For the
fast transport task, the parallel arm’s performance is shown in Figure 5.16. This is
a plot of manipulative efficiency (as), and again the parallel arm has better overall
performance compared to the serial arm. which is shown in Figure 5.10. Similar
results were shown by Spenny and Leahy (4), so this is not surprising, but this is

another example of the diversity of problems to which power analysis can be applied.

The ratio of the lengths of each link can be changed. providing another option
in the structural design of a 2-DOF arm. The usefulness of such a variation to the

serial arm can be checked by two possible configurations: 1) let the first ink he twice
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Figure 5.15. Lift Task Efficiency for 2-DOF Parallel Arm w/DC Motors. The
lightest region represents nr = 95% and the black region represents
nNK R 0%.

as long as the second, and 2) let the first link be half as long as the second. Figure 5.17
shows the kinetic efficiency of the first case when doing a lift task. Figure 5.13 shows
the same task for the second configuration. When compared with Figure 5.6. one
can see that the efficiency is similar to the standard two-link arm. with performance
falling off as x increases. For the first configuration, however, the drop off is not as
fast as for the standard two-link, resulting in an increased overall efficiency. If the
reduced reachable workspace was not an issue, this might be a possible method for

increasing the power efficiency when performing a lift task.

5.4 Kinematic Redundancy

When a mechanisin has more degrees of freedom than its task requires. it is

said to be redundant. For kinematic redundancy. this means that the mechanism

519




Figure 5.16. Fast Transport Task Efficiency for 2-DOF Parallel Arm w/DC Mo-
tors. The lightest region represents 7, =~ 95% and the black region
represents ni = 0%.

has an infinite choice of joint positions that can complete the task. This choice
of joint positions and joiut velocities allows the robot to either do more than one
task simultaneously, or to do its task while optimizing or maintaining some other
condition. Redundancy has been used for singularity avoidance, obstacle avoidance,

and the completion of multiple tasks by Nakamura (8) and others.

To illustrate how power analysis can be applied to the choice of redundant
solutions, consider a lift task with a three-link serial arm. Let each link length be
one, and the task be f = {0.1},v = {0, 1} starting at a position (x,y) = (1.0.25).
Consider two possible configurations for the manipulator, as shown in Figure 5.19.

Which configuration provides the most efficient usc of power while completing the




Figure 5.17.  Lift Task Efficiency for Two-Link Arm w/DC Motors and & = 2. The
lightest region represents nx =~ 95% and the black region represents
N ~ 0%

task? Recall that kinetic efficiency is given by equation 4.22

nK = W

Using DC motors at the joints, device power is

DP =fTJJf + Ty (5.

Ut
—_
8™

—

so that the efficiency becomes

fTv
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Figure 5.18. Lift Task Efficiency for Two-Link Arm w/DC Motors and 22 = 2. The
lightest region represents nx = 95% and the black region represents
nK = 0%

in which f,v have been defined above and the Jacobian is

—&p T S12 — 8123 TS2 T S1230 5123
J(6) = (5.14)

¢+ ci2 + i3 Ciz2 + 123 Ci23

For the first configuration, shown in gray in the figure, 8, = (2.87,-2.69.-0.38)"
and the device power is 6.8, for an efficiency of 551 = 14.6%. The second configura-
tion , shown in black, has angles 8, = (1.71. —1.46, — 1.65)7. which leads to a device
input power of 3.33, and an efficiency of nx2 = 30.1%. Clearly, the selection of the

configuration can greatly affect the efficiency of the robot in performing the task.
If the task and robot are fixed, then one can easily find the optimum configu-
ration for the manipulator by minimizing DP(8). using any standard optimization

technique. A more interesting problem, however, is when a robot must perform many




Figure 5.19. Two Possible Joint Configurations for Three-Link Serial Arm.

different tasks in a sequential fashion, and cannot always be configured in advance
for each one. Then it would be useful if the robot could be controlled in such a way
that it “seeks out” the most efficient configuration. while simultancously performing

o

the task.

One solution to this problem can be derived using Nakamura's task prior-
ity equations (8:pp.126-131), coupled with the device input power as a potential
function. Suppose the given task is constant, and let the starting configuration be
arbitrary. as if the robot had just finished a different task. The object is to complete
the task while altering the configuration to improve efficiency. The joint velocities
can be commanded by using the equation for a kinematically redundant mechanism,

equation 4.8

0 =J*v+(I—J%))z

Nt
I
[}
v




but let the arbitrary vector z be defined by

_ / ()[)[) ! = 1,—\
Z =~k 90 (3.15)

Then the commanded joint velocities are

(5.16)

’ T
6 :.]#v—(l—.]#.])k((DP>

06
This choice of joint velocities will result in the proper motion of the end-effector (v).
but will also work to reconfigure the manipulator so as to minimize device power
DP. This in turn optimizes 5y, since the output power is constant. Suppose the

task requires no motion, so that v = 0. Then

dippy _ (8DP)0-

I

di o0

ODP aDpP\"
= (= JEnk | 8

56 | J)A( B )

oDP r(aDP\"

_ I _J# _#
- A,(80)<I JEI) (1 - %)) ((_)0)
< 0

when & > 0. This uses the idempotency and symmetry of (/ — J#.J). Since k is
chosen in the design of the control law, then device power can he designed to have
a monotonic decline for a stationary task. This does not guarantee j’;(l) ) <0 for
v # 0. but the second term always will operate to reduce DP as much as possible

while still completing the task.

This scheme was applied to the lifting task through the use of a Mathematica

the task. The starting position was taken as the less efficient (gray) configuration

im Figure 5.19 and the arm was allowed to run for 5 seconds. The task has been




Figure 5.20. Motion of Kinematically Redundant Arm Performing a Lift Task
While Optimizing Efficiency.

modified slightly to f = {0,0.1}.v = {0.0.1} which does not change efficiency in any
way, but allows a longer time to elapse for a small total lift distance. The motion
of the arm is shown in Figure 5.20. Note how the robot end-effector moves straight
up. as required by the task, but the configuration changes to approach the most
efficient position for the task. It actually passes through the black configuration of
Figure 5.19, indicating that this was not the optimum configuration. The efficiency
increase of the mechanisim is shown by Figure 5.21, which shows the efficiency over
time. In contrast, if the device power is not used to drive the robot to increased
efficiency, but rather only the first term of equation 4.8 is used. then the robot
moves as shown in Figure 5.22. The task is still performed, but the shape of the
arm remains relatively unchanged, since this solution provides as little joint speed

as possible.” The difference in the two solutions can be substantial in terms of the

5This solution is the @ that has the minimum norm ||9||
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Figure 5.21. Efficiency of Serial Three-Link During a Lift Task.

Figure 5.22. Motion of Kinematically Redundant Armi Performing a Lift Task
While NOT Optimizing Efficiency.
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Figure 5.23.  Energy Use of Serial Three-Link During a Lift Task. Energy is defined

as E(t) = [; DP(7)dr

energy used to complete the task, as shown in Figure 5.23. About twice as much

energy 1s used when the rednndancy is not ntilized.

The choice of the constant & in this control scheme was said to be arbitrary,
subject only to the constraint & > 0. In the above simulation. & was set to one.
Increasing A results in a faster response, moving the manipulator to the optimum
location very quickly. However, in the end, & must be chosen based on the maximum

possible joint speed, so that the control will not saturate the motors.

While this method does work to improve effliciency, it is not without problems
as a control scheme. The foremost problem is that the method does not avoid
singularity points of the manipulator. At these points, the joint velocities required
for an arbitrary motion can be very large. which is generally seen by the “blowing
up” of the Jacobian inverse or pseudoinverse. Unfortunately. the singularity was
artificially removed from the device power equation when .J=! was cancelled by a J
(770 =fTJJ v = f7v). The result is that no penalty is assessed for these infinite
velocities, because the corresponding torque is near zero. If the D' motor was more

precisely modelled, terms would be introduced that would force device power to




infinity when infinite specds were required. For example. if motor windage losses
were added. it would have a term of the form vI(JJ7) /7 v in the deviee power
equation, which would go to infinity at singular points. Another possible solution
is to add kyJHO) to DP(8) to create a new potential function. Then. using the
values of A and k. the control law could weight the importance of avoiding singular

points against the importance of improved efliciency.

In light of this last concern. it is also interesting to reconsider the problem,
substituting hydraulic motors for the DC motors at the joints. Then the device
power is given by

DP =nT|J*v 4+ (1 — J*J)z| (5.

Ut
—
-1

—

and equation 5.13 becomes

B fTv
- nTJ#EV 4 (1 — J#))z|

K

From this equation, it is apparent that the minimization of the device power for the
hydraulic robot will also be effective in avoiding singularities, since ||J#v| — oc.
i — 0 as singular points are approached. However, a new problem emerges since z is
still in the device power equation for the kinematically redundant hydraulic actuator
case, whereas it did not appear in the device power equation for the kinematically
redundant DC motor case. Now there arc two optimization problems. one in which
the best configuration must be chosen, and one in which the best distribution of
velocities in the joints must be chosen. A method to solve this is to define a new
“state” vector for the svstem including not only the joint configuration 8. but also

the arbitrary vector z,

¢ = (5.19)




Then the device power is a function of @, and cquation 5.16 can be written

,
. D P
) = AX — kB <( / /—> (5.20)
)
where
J* 0
0 0
Vv
X =
0
[1_g%1 o]
B =
0 !
opp — [ ADP  ADP }
b EC T

Note that B is idempotent and symmetric, so that when x = 0,

ADP .
B

oDP _ ODP
96 BUoe 7))
ADP . . dDP
56 P8 5

d
;/—/(DP) =

= —k

=~k )"

[

0

as before. This method has not been simulated because the actual expression of
device power is terms of @ is much more complex than for the electric case. and
requires a more sophisticated numerical routine.  Unfortunately. the time for the

development of such a routine was not available.
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5.5 Actuator Redundancy Besolulion

The final examplie of power analvsis™ usefulness is a simple demonstration of
how the distribution of torques 1 a mechanism can be chosen by picking the com-

bination that provides the most elflicient use of power.

Recall that for a mechanisin with redundant actuators. driven by nondimen-

sionalized D(C' motors. the device input power can be written

DP = w'JassEGTITw 4+ yT(] — s5#)y

+w! JGSSEUTT e +y (1 = SSFYWIT Tt ) 0, (5.21)
Then to minimize DI’ with respect to the arbitrary vector y. the condition
—— =0 (5.22)

must be met. Using the symmelry of (I — SS#), this partial derivative can be

written:
0D P L - .
(I — SS*)y + (1 = SSEY I )0 = 0 (5.23)
dy
Then combining terms,
aDpP . 3
— (] gy o —1op _ -
Sy (1= 55%) 2y + (J] ' Tt)au] = 0 (5.21)
Now let x = 2y + (J'T't) 4., and the equation becomes:
(I -S5%)x=0 (5.25)
When redundancy exists, (I — SS5#) £ 0, and the solution is:
x = §5%q (5.26)
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where @ is an arbitrary vecror. Then solving for y i terms of .

Dy 4 (S Ty, = SSF i(5.270
e b .
y = .»)‘\\ q- 3(/ ['tigy 1,25

Then the optimal choice for torque distribution can be found by substitutine this

back into the torque equation to get

g 1 » { .
T, = Sy#! ./l,’ w+ ([ — .5'.\,'#) .;.s',\,'" q- 3(./: Ity
e = SS*GT ) w - S SSEWITV) 0 (5.29)

Note that the arbitrary vector g disappears [rom the torque expression. This value

for torque in turn produces a device power of

DP = wl,ass*GT JTw 4wl J.GSS#FIT)
1 " - .
—I(.I,.‘“’l‘t)fh_,(l — SSEYSTT) 4 15.30)

Consider a task where a two-link serial arm s required to push against
stationary object as shown i Fignre 5.240 As was discnssed carlier. when an open
loop mecharism comes in contact with the environment it hecomes a closed loop
mechanism. In this case, only one actuator is reguired to produce the desired foree.
and the other actnator is redundant. It the rohot ix treated as a won-redundant

mechanmsm. then the required joint torques are
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F=(1.0)

1\V\\Y\\V

92 = -0.5 radian

(x.y)=(1.4, 1.3)

NNNNNANN
/

6, =1 radian
Figure 5.24. Task with Redundant Netuation

for the 0. 0,. and f shown in the figure. Since there is no motion. 8 = {(0.0)" . and

device power is

DP = t'rasTo=+"1

= 197 (5.31)
Since this 1s a reactive task, reactive efficiency is used and

M ~ 0.5 (5.
nr . '

it
w
8
—

=

Now compare this to the result obtained by using the equation for optimal redundant
torque actuation. equation 5.29. In this example. w = f and t = 0. The matrix ¢4

is given by

(,' = iy I (.);g)
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+ = I because no open loop joints are virtually actnated. The matvix S s given by

' l | 1
S = . = = ('—’-:;H
2 bl W —1.6

iy cp2

and .J, is the standard two-link Jacobian. Then the torque s

l ) —1.32 0 ]
T, = 0277 —0.447 + (5.35)
—1.6 0 1 SN 0
—0.15
T, = (5.36)
0.21

Note that when t = 0. the optimal choice for y becomes y = 0. Using this torque

vector, the device power becomes

DP =117,

|
>
=
7
o
—
it
L
=
=

and reactive cfficiency is
i

— a2 598
0.0821 (5.35)

Ui

This demonstrates that with the optimal choice of torque distribution. the perfor-

mance of the robot in terms of power efficiency is greatly improved.

It can easily be shown by a statics analvsis that this torque distribution still
exerts a horizontal force on the wall of f,. = 1. The difference (other than reduced
input power) is that the reaction forces in the vertical direction are changed. The
vertical force is zero for the first case bt f, = —0.8210 when the torqueis calenlated
for the optimal efliciency case. The fact that this non-zero vertical foree s generated
is a possible problem with this method when applied to open-loop systems that
hecome closed-loop systems by contact with the environment. If the method is

applied to a real closed-loop mechanism. the change in forces at the point where




the virtual cut is made would be completely internal. and have no effect on the
task. However. thix does not mean that the method cannot be used as shown in the
example. it onlyv means that some other constraint on the torques may exist. hin the
example. to reach the optimal torque distribution. the coeflicient of friction between
the wall and the end-effector would have to be greater than 0.824. Ity < 0.321. then
the end-effector would slip hefore this torque distribution was reached. This type
of constraint can be expected to surface in applying this method to many areas of

robotics. such as optimal grasping, but can still be useful.




VI. Conclusion

The purpose of this thesis was to develop a means of measuring and using the
energy efficiency of yobotic devices. This required a consistent method of describing
the task mathematically, a measurement of the task output. an expression for the
power required by the device, and a metric which combined these clements into a
scalar quantity that one could use to judge how efficiently the mechanism performed

the task.

The function of most mechanisms can be stated by describing the motion of
the mechanism and the forces that it exerts on the environment. Often the motion is
a complex path. and the forces will change as the device moves from start to finish in
the accomplishment of 1ts function. In addition, some mechanisnis, such as robots,
are multi-functional, creating an even more complex system of tasks to describe.
At any given instant, however, the motion and exerted force of the device can be
considered constant. These quantities can then be written as two screws, the twist
and the wrench, and this screw pair is then considered to be the iustantaneous task

of the mechanisin.

For some functions. one of the two defining qualities may be of greater im-
portance than the other. For example, when writing, the motion of the pencil tip
is much more crucial than the force exerted by the tip on the paper. The relative
importance of the force and motion can be used to divide tasks into three types:
kinetic, mampulative. and reactive. In kinetie tasks. force and motion are equally
nnportant: in manipulative tasks. motion is most important; and in reactive tasks.

force is most important.,

Given these task types it is evident that no single metric is appropriate for all
tasks. Therefore. we developed a metrie for each task tvpe. For kinetic tasks. the

performance was judged by the standard efficiency measure of the ratio of ontput

6




power to input power. lor manipulative tasks. the metric used divides the twist
magnitude by the input power, and for reactive tasks. the wrench magnitade was

divided by the mput power.

The input power was found to be a function of the task. the geometric confie-
uration. and the type of actuator used by the mechanism. When redundancy exists
in the mechanism. it was shown that the expression for input power contained an

arbitrary term that could be used to change the power requirements for a given task.

After establishing the method for measuring the efhciency in chapter [V chap-
ter V demonstrated some of the ways i which robotics systems can be designed so
as to optimize energy efficiency. It was shown that the location of the task. rela-
tive to the robot base, can be chosen to improve cfficiency. and that when multiple
inverse kinematic solutions exist, they do not necessarily have the same efficiency
for a given task. It was also found that DC motor driven robots are generally more
cfficient than hydraulic actuated robots when performing kinetic and manipulative
tasks, but that hydraulics are more efficient for reactive tasks. Power analysis was
also shown to be a useful tool in determining the most efficient mechanical structure
for a robot. In particular. for many tasks, a parallel-type armi is more efficient than
a serial arm.

Redundancy resolution can also be accomplished by power analvsis. A method
was developed for controlling a serial arm with kinematic redundancy. and numerical
simulations demonstrated the ability of the algorithm to decrease energy use in a

lifting task. Actuation redundancy can also be used to improve efficiency.

Since this arca has not been extensively studied. this paper has tried to lay
a mathematical foundation for power analvsis. and survey some of the possible ap-
plications. Futnre work is needed to supplement this thesis in many arcas. First.
experimental evidence is required to verify the basic equations and the actuator
models. Second, the applications should be explored in much greater detail. In par

ticular, the analysis of closed chain mechanisims should be expanded, to extend its
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application to optimal grasping. Finally, expanded actuator models conld be devel-
oped. which mav allow a more accurate picture of how a mechanisms monion and

force aftect 1ts power nse.

The field of robotics is relatively voung. and until recentlv. most vescarch iy
robotics has been in developing methods to design and control robots in a variety of
tasks. This goal has been nearly reached, as the kinematics and control of manipi-
lators 1s well understood. I believe that the goal of robotics engineers in the futnre
should be to create robots that not only work. but work efficientiv. 1 hope that this

thesis mav contribute in some way to the attainment of this goal.




Appendix A. Mathematica Routine Used For Kmematic Redunduncy

Eramnple

(*This Mathematica file will simulate a three-link serial arm

performing a lifting task. *)

(*The equations below are for finding the inverse kinematic
solution. They are not used by the Q functions, but are for

troubleshooting purposes. *)

ex - Cos[tt]

j2x:

ey - Sin[tt]

J2y:

d:=(j2x"2 + j2y~2 -2)/(2)

t2:=ArcTan[d,-Sqrt{1-d"2]]

t1:=ArcTan[j2x,j2y] - ArcTan[1+ Cos[t2], Sin[t2]]

t3:=tt-t2-t1

Cos[t1] + Cos[t1+t2] + Cos[t1+t2+t3]

px[{t1_,t2_,t3_]:

pylti_,t2_,t3_J:= Sin[t1] + Sin[t1+t2] + Sin[+1+t2+t3]

(* The dpt[] function calculates the partial time derivative of the

device power. *)
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dpt[t1_,t2_,t3_]:= {2*(Cos[t1 + t2] + Cosftl + t2 + t3])*

(-Sin[t1 + t2] - Sin[t1 + t2 + t3]) +

2% (Cos[t1] + Cos[t1 + t2] + Cos[tl + t2 + t3])*
(-sinf[t1] - Sin[t1 + t2] - Sinf[tl + t2 + t3]) -

2%Cos[t1 + t2 + t3]*Sin[t1 + t2 + t3],

2% (Cos[t1 + t2] + Cos[tl + t2 + t3])*
(-Sin[t1 + t2] -~ Sin[t1 + t2 + t3]) +

2% (Cos[t1] + Cos[t1 + t2] + Cos[tl + t2 + t3])*
(-Sin[t1 + t2] - Sin[t1l + t2 + t3]) -

2%Cos[t1 + t2 + t3]*Sin[t1 + t2 + t3],

-2%Cos[t1 + t2 + t3]*Sin[t1 + t2 + t3] -

2% (Cos[t1l + t2] + Cos[t1 + t2 + t3])#Sin[t1l + t2 + t3] -

2% (Cos[t1] + Cos[t1 + t2] + Cos[tl + t2 + t3]1)*Sinft1 + t2 + t3]}

(* j[1 is the manipulator Jacobian, jp[] is its pseudoinverse. *)

jlt1_,t2_,t3_1:= {{-Sinlt1] - Sinlt1 + t2] - Sin[t1 + t2 + t3],

-Sin[t1 + t2] - Sin[t1 + t2 + t3], -Sin[t1 + t2 + t3]},

{Cos[t1] + Cos[t1 + t2] + Cos[tl + t2 + t3],

Cos[tl + t2] + Cos[t1l + t2 + t3], Cos[tl + t2 + t3]}}

jplti_,t2_,t3_]:=pinv[jlt1,t2,t3])

(* dp[] calculates the device power, eff[] calculates efficiency.

*)




dplti_,t2_,t3_]:= f.v + £.3[¢t1,t2,t3].T[3[t1,t2,t3]] .1

eff(t1_,t2_,t3_]:= f.v/dpl(t1,t2,t3]

(* The expressions below set the intial variables for the task. *)

9=q0
t0:={2.87071,-2.68862,-.382089}
£=t0

dt0:={0,0,0}

dt=dt0

tv=Table[0,{z,51}]
qv=Table[0,{z,51}]
effv=Table[0,{z,51}]

dpv=Table[0,{z,51}]

(*The function Q{w_] runs a simulation of the lift task from t=0 to
t=w, using the kinematically redundant equations. The Qof[w_]
function runs the same simulation without taking advantage of

redundancy. *)
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Qlw_]:= Block[{t=t0,dt=dt0,q=0}, Do[t=N[t+dt dx]; a=N[t[[1]J];
b=N{t([2]]3; <=N{t[[3]1]1; dt = N[jpla,b,cl.v - k (Id[3]

~-jpla,b,c).jla,b,cl) .dptla,b,cll; q = N[q + Nldpla,b,c] dx]];
i=Floor[10.01 x + 1]; tv[[i]] = t; effv[[i]] = N[eff[a,b,c]];

dpv[[i]] = Nldpla,b,c]];qvl[ill=q, {x,x0,w,dx}];Print(q]]

QO0[w_]:= Block[{t=t0,dt=dt0,q=0}, Do[t=N[t+dt dx]; a=N[t{[1]]];
b=N[t{[2]1]; c=N[t[[311]; dt = N[jpla,b,cl.v]; q = N[q +
N{dpla,b,c] dxJJ; 1=Floor[10.01 x + 1]; tv[[il] = t; effv([i]] =
N[effla,b,c]]; dpv[[i]] = N{dpla,b,c]];qv[[i]]=q,
{x,x0,w,dx}];Print[ql]

(*The functions below draw a picture of the motion simulated by Q[]

or QO[], using Mathematica’s graphics primitives. *)

Glt1_,t2_,t3_,g_l:=Graphics[{GrayLevel{gl,Line[{{0,0},{xt[t1],y1
[t1]},{x2[t1,t2],y2(t1,t2]},{x3[t1,t2,t3],y3[t1,t2,t31}}],Line({{-
.3,0},{.3,0}}],PointSize(0.03] ,,Point [{0,0}],Point [{x1[t1],y1[t1]}]

,Point [{x2[t1,t2],y2[t1,t2]1}]}]

i}

Gilv_,g_J:= G[v[[1]],v[[2]],v[[3]],g]

il

Gplx_,g_]:= Block[{},Glist=Table[0,{z,10}]; Do[Glist[[Floor{i/5

+1]11=G1{tv[[il],gl,{i,1,x,5}]]

Gf :=Drop[Glist,-Count[Glist,0]]
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(* The following functions calculate the position of each joint for

the graphics functions. *)

x1[t1_]:

Cos[t1]

y1lt1_l:= Sin[t1]

x2[t1_,t2_1:= x1[t1] + Cos[t1+t2]

y2[t1_,t2_1:= y1[t1] + Sin[t1+t2]

x3[t1_,t2_,t3_1:= x2[t1,t2] + Cos[t1+t2+t3]

y3[{t1_,t2_,t3_]:

y2lt1,t2] + Sin{t1+t2+t3]
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